Rodyti trumpą aprašą

dc.rights.licenseVisos teisės saugomos / All rights reserveden_US
dc.contributor.authorŽvirblis, Tadas
dc.contributor.authorPikšrys, Armantas
dc.contributor.authorBzinkowski, Damian
dc.contributor.authorRucki, Mirosław
dc.contributor.authorKilikevičius, Artūras
dc.date.accessioned2026-01-05T11:17:06Z
dc.date.available2026-01-05T11:17:06Z
dc.date.issued2024
dc.identifier.isbn9798350352429en_US
dc.identifier.issn2831-5634en_US
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/159656
dc.description.abstractThis work explores time series data augmentation methods for deep learning and their application for conveyor belt tension signals. In this research, conveyor belt load data was collected and analyzed for five different weights: 0.5 kg, 1 kg, 2 kg, 3 kg, and 5 kg. The research includes applying time series data augmentations like Laplace noise, Gaussian noise, uniform noise, magnitude warping, and channel permutation. Furthermore, new conveyor belt tension signals were generated using a Time VAE model. This study investigates the influence of time series augmentation methods on the accuracy of deep learning models. A CNN-LSTM deep learning model capable of classifying conveyor belt signal data has been developed. The biggest positive impact on the classification accuracy was the addition of Laplace noise, which improved the baseline (no augmentation) accuracy by 4.07 % to 98.64 % for 0.8 second signal data.en_US
dc.format.extent6 p.en_US
dc.format.mediumTekstas / Texten_US
dc.language.isoenen_US
dc.relation.urihttps://etalpykla.vilniustech.lt/handle/123456789/159404en_US
dc.source.urihttps://ieeexplore.ieee.org/document/10542589en_US
dc.subjecttime seriesen_US
dc.subjectdata augmentationen_US
dc.subjectdeep learningen_US
dc.subjectvariational autoencodersen_US
dc.subjectconveyor belten_US
dc.titleTime Series Data Augmentation Methods for Deep Learning Models in Conveyor Belt Load Classificationen_US
dc.typeKonferencijos publikacija / Conference paperen_US
dcterms.accrualMethodRankinis pateikimas / Manual submissionen_US
dcterms.issued2024-06-05
dcterms.references12en_US
dc.description.versionTaip / Yesen_US
dc.contributor.institutionVilnius Universityen_US
dc.contributor.institutionKazimierz Pulaski University of Technology and Humanities in Radomen_US
dc.contributor.institutionVilniaus Gedimino technikos universitetasen_US
dc.contributor.institutionVilnius Gediminas Technical Universityen_US
dc.contributor.facultyMechanikos fakultetas / Faculty of Mechanicsen_US
dc.contributor.departmentMechanikos mokslo institutas / Institute of Mechanical Scienceen_US
dcterms.sourcetitle2024 IEEE Open Conference of Electrical, Electronic and Information Sciences (eStream), April 25, 2024, Vilnius, Lithuaniaen_US
dc.identifier.eisbn9798350352412en_US
dc.identifier.eissn2690-8506en_US
dc.publisher.nameIEEEen_US
dc.publisher.countryUnited States of Americaen_US
dc.publisher.cityNew Yorken_US
dc.description.fundingorganizationResearch Council of Lithuania (LMTLT)en_US
dc.description.grantnumberS-PD-22-81en_US
dc.identifier.doihttps://doi.org/10.1109/eStream61684.2024.10542589en_US


Šio įrašo failai

FailaiDydisFormatasPeržiūra

Su šiuo įrašu susijusių failų nėra.

Šis įrašas yra šioje (-se) kolekcijoje (-ose)

Rodyti trumpą aprašą