| dc.rights.license | Visos teisės saugomos / All rights reserved | en_US |
| dc.contributor.author | Žvirblis, Tadas | |
| dc.contributor.author | Pikšrys, Armantas | |
| dc.contributor.author | Bzinkowski, Damian | |
| dc.contributor.author | Rucki, Mirosław | |
| dc.contributor.author | Kilikevičius, Artūras | |
| dc.date.accessioned | 2026-01-05T11:17:06Z | |
| dc.date.available | 2026-01-05T11:17:06Z | |
| dc.date.issued | 2024 | |
| dc.identifier.isbn | 9798350352429 | en_US |
| dc.identifier.issn | 2831-5634 | en_US |
| dc.identifier.uri | https://etalpykla.vilniustech.lt/handle/123456789/159656 | |
| dc.description.abstract | This work explores time series data augmentation methods for deep learning and their application for conveyor belt tension signals. In this research, conveyor belt load data was collected and analyzed for five different weights: 0.5 kg, 1 kg, 2 kg, 3 kg, and 5 kg. The research includes applying time series data augmentations like Laplace noise, Gaussian noise, uniform noise, magnitude warping, and channel permutation. Furthermore, new conveyor belt tension signals were generated using a Time VAE model. This study investigates the influence of time series augmentation methods on the accuracy of deep learning models. A CNN-LSTM deep learning model capable of classifying conveyor belt signal data has been developed. The biggest positive impact on the classification accuracy was the addition of Laplace noise, which improved the baseline (no augmentation) accuracy by 4.07 % to 98.64 % for 0.8 second signal data. | en_US |
| dc.format.extent | 6 p. | en_US |
| dc.format.medium | Tekstas / Text | en_US |
| dc.language.iso | en | en_US |
| dc.relation.uri | https://etalpykla.vilniustech.lt/handle/123456789/159404 | en_US |
| dc.source.uri | https://ieeexplore.ieee.org/document/10542589 | en_US |
| dc.subject | time series | en_US |
| dc.subject | data augmentation | en_US |
| dc.subject | deep learning | en_US |
| dc.subject | variational autoencoders | en_US |
| dc.subject | conveyor belt | en_US |
| dc.title | Time Series Data Augmentation Methods for Deep Learning Models in Conveyor Belt Load Classification | en_US |
| dc.type | Konferencijos publikacija / Conference paper | en_US |
| dcterms.accrualMethod | Rankinis pateikimas / Manual submission | en_US |
| dcterms.issued | 2024-06-05 | |
| dcterms.references | 12 | en_US |
| dc.description.version | Taip / Yes | en_US |
| dc.contributor.institution | Vilnius University | en_US |
| dc.contributor.institution | Kazimierz Pulaski University of Technology and Humanities in Radom | en_US |
| dc.contributor.institution | Vilniaus Gedimino technikos universitetas | en_US |
| dc.contributor.institution | Vilnius Gediminas Technical University | en_US |
| dc.contributor.faculty | Mechanikos fakultetas / Faculty of Mechanics | en_US |
| dc.contributor.department | Mechanikos mokslo institutas / Institute of Mechanical Science | en_US |
| dcterms.sourcetitle | 2024 IEEE Open Conference of Electrical, Electronic and Information Sciences (eStream), April 25, 2024, Vilnius, Lithuania | en_US |
| dc.identifier.eisbn | 9798350352412 | en_US |
| dc.identifier.eissn | 2690-8506 | en_US |
| dc.publisher.name | IEEE | en_US |
| dc.publisher.country | United States of America | en_US |
| dc.publisher.city | New York | en_US |
| dc.description.fundingorganization | Research Council of Lithuania (LMTLT) | en_US |
| dc.description.grantnumber | S-PD-22-81 | en_US |
| dc.identifier.doi | https://doi.org/10.1109/eStream61684.2024.10542589 | en_US |