• Lietuvių
    • English
  • English 
    • Lietuvių
    • English
  • Login
View Item 
  •   DSpace Home
  • Universiteto produkcija / University's production
  • Universiteto leidyba / University's Publishing
  • Konferencijų medžiaga / Conference Materials
  • Tarptautinės konferencijos / International Conferences
  • International Conference "Electrical, Electronic and Information Sciences“ (eStream)
  • 2024 International Conference "Electrical, Electronic and Information Sciences“ (eStream)
  • View Item
  •   DSpace Home
  • Universiteto produkcija / University's production
  • Universiteto leidyba / University's Publishing
  • Konferencijų medžiaga / Conference Materials
  • Tarptautinės konferencijos / International Conferences
  • International Conference "Electrical, Electronic and Information Sciences“ (eStream)
  • 2024 International Conference "Electrical, Electronic and Information Sciences“ (eStream)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Time Series Data Augmentation Methods for Deep Learning Models in Conveyor Belt Load Classification

Thumbnail
Date
2024
Author
Žvirblis, Tadas
Pikšrys, Armantas
Bzinkowski, Damian
Rucki, Mirosław
Kilikevičius, Artūras
Metadata
Show full item record
Abstract
This work explores time series data augmentation methods for deep learning and their application for conveyor belt tension signals. In this research, conveyor belt load data was collected and analyzed for five different weights: 0.5 kg, 1 kg, 2 kg, 3 kg, and 5 kg. The research includes applying time series data augmentations like Laplace noise, Gaussian noise, uniform noise, magnitude warping, and channel permutation. Furthermore, new conveyor belt tension signals were generated using a Time VAE model. This study investigates the influence of time series augmentation methods on the accuracy of deep learning models. A CNN-LSTM deep learning model capable of classifying conveyor belt signal data has been developed. The biggest positive impact on the classification accuracy was the addition of Laplace noise, which improved the baseline (no augmentation) accuracy by 4.07 % to 98.64 % for 0.8 second signal data.
Issue date (year)
2024
Author
Žvirblis, Tadas
URI
https://etalpykla.vilniustech.lt/handle/123456789/159656
Collections
  • 2024 International Conference "Electrical, Electronic and Information Sciences“ (eStream) [41]

 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specializationThis CollectionBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specialization

My Account

LoginRegister