• Lietuvių
    • English
  • Lietuvių 
    • Lietuvių
    • English
  • Prisijungti
Peržiūrėti įrašą 
  •   DSpace pagrindinis
  • Universiteto produkcija / University's production
  • Universiteto leidyba / University's Publishing
  • Konferencijų medžiaga / Conference Materials
  • Tarptautinės konferencijos / International Conferences
  • International Conference "Electrical, Electronic and Information Sciences“ (eStream)
  • 2024 International Conference "Electrical, Electronic and Information Sciences“ (eStream)
  • Peržiūrėti įrašą
  •   DSpace pagrindinis
  • Universiteto produkcija / University's production
  • Universiteto leidyba / University's Publishing
  • Konferencijų medžiaga / Conference Materials
  • Tarptautinės konferencijos / International Conferences
  • International Conference "Electrical, Electronic and Information Sciences“ (eStream)
  • 2024 International Conference "Electrical, Electronic and Information Sciences“ (eStream)
  • Peržiūrėti įrašą
JavaScript is disabled for your browser. Some features of this site may not work without it.

Time Series Data Augmentation Methods for Deep Learning Models in Conveyor Belt Load Classification

Thumbnail
Data
2024
Autorius
Žvirblis, Tadas
Pikšrys, Armantas
Bzinkowski, Damian
Rucki, Mirosław
Kilikevičius, Artūras
Metaduomenys
Rodyti detalų aprašą
Santrauka
This work explores time series data augmentation methods for deep learning and their application for conveyor belt tension signals. In this research, conveyor belt load data was collected and analyzed for five different weights: 0.5 kg, 1 kg, 2 kg, 3 kg, and 5 kg. The research includes applying time series data augmentations like Laplace noise, Gaussian noise, uniform noise, magnitude warping, and channel permutation. Furthermore, new conveyor belt tension signals were generated using a Time VAE model. This study investigates the influence of time series augmentation methods on the accuracy of deep learning models. A CNN-LSTM deep learning model capable of classifying conveyor belt signal data has been developed. The biggest positive impact on the classification accuracy was the addition of Laplace noise, which improved the baseline (no augmentation) accuracy by 4.07 % to 98.64 % for 0.8 second signal data.
Paskelbimo data (metai)
2024
Autorius
Žvirblis, Tadas
URI
https://etalpykla.vilniustech.lt/handle/123456789/159656
Kolekcijos
  • 2024 International Conference "Electrical, Electronic and Information Sciences“ (eStream) [41]

 

 

Naršyti

Visame DSpaceRinkiniai ir kolekcijosPagal išleidimo datąAutoriaiAntraštėsTemos / Reikšminiai žodžiai InstitucijaFakultetasKatedra / institutasTipasŠaltinisLeidėjasTipas (PDB/ETD)Mokslo sritisStudijų kryptisVILNIUS TECH mokslinių tyrimų prioritetinės kryptys ir tematikosLietuvos sumanios specializacijosŠi kolekcijaPagal išleidimo datąAutoriaiAntraštėsTemos / Reikšminiai žodžiai InstitucijaFakultetasKatedra / institutasTipasŠaltinisLeidėjasTipas (PDB/ETD)Mokslo sritisStudijų kryptisVILNIUS TECH mokslinių tyrimų prioritetinės kryptys ir tematikosLietuvos sumanios specializacijos

Asmeninė paskyra

PrisijungtiRegistruotis