Rodyti trumpą aprašą

dc.rights.licenseVisos teisės saugomos / All rights reserveden_US
dc.contributor.authorNarmontas, Audrius
dc.contributor.authorJankevičiūtė, Rūta
dc.contributor.authorBliujus, Tomas
dc.contributor.authorVaičekauskas, Evaldas
dc.contributor.authorAbromavičius, Vytautas
dc.date.accessioned2026-01-05T12:05:04Z
dc.date.available2026-01-05T12:05:04Z
dc.date.issued2024
dc.identifier.isbn9798350352429en_US
dc.identifier.issn2831-5634en_US
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/159657
dc.description.abstractConvolutional Neural Networks (CNNs) have been widely used in artificial intelligence (AI) research. However, the time-intensive nature of hyperparameter optimization remains a major challenge. In this study, we investigated three distinct CNN architectures, namely, ResNet, Multi-class, and ConvLSTM, by employing Genetic Algorithm (GA). The GA-driven optimization process efficiently adapts the parameters, resulting in significant improvements in validation accuracy and reduced training time. Moreover, our findings indicate that compared to exhaustive manual exploration, GA substantially reduces the time required for hyperparameter optimization, thereby offering a more efficient and effective approach for enhancing model outcomes in reasonable timeframes. This underscores the importance of employing advanced optimization techniques such as GA in AI research to achieve superior model outcomes.en_US
dc.format.extent4 p.en_US
dc.format.mediumTekstas / Texten_US
dc.language.isoenen_US
dc.relation.urihttps://etalpykla.vilniustech.lt/handle/123456789/159404en_US
dc.source.urihttps://ieeexplore.ieee.org/document/10542579en_US
dc.subjectGenetic Algorithmen_US
dc.subjectConvolutional Neural Networksen_US
dc.subjectHyperparameter optimizationen_US
dc.titleExploration of Genetic Algorithm-Driven Hyperparameter Optimization for Convolutional Neural Networksen_US
dc.typeKonferencijos publikacija / Conference paperen_US
dcterms.accrualMethodRankinis pateikimas / Manual submissionen_US
dcterms.issued2024-06-05
dcterms.references17en_US
dc.description.versionTaip / Yesen_US
dc.contributor.institutionVilniaus Gedimino technikos universitetasen_US
dc.contributor.institutionVilnius Gediminas Technical Universityen_US
dc.contributor.institutionFaculty of Informaticsen_US
dc.contributor.facultyElektronikos fakultetas / Faculty of Electronicsen_US
dc.contributor.departmentElektroninių sistemų katedra / Department of Electronic Systemsen_US
dcterms.sourcetitle2024 IEEE Open Conference of Electrical, Electronic and Information Sciences (eStream), April 25, 2024, Vilnius, Lithuaniaen_US
dc.identifier.eisbn9798350352412en_US
dc.identifier.eissn2690-8506en_US
dc.publisher.nameIEEEen_US
dc.publisher.countryUnited States of Americaen_US
dc.publisher.cityNew Yorken_US
dc.identifier.doihttps://doi.org/10.1109/eStream61684.2024.10542579en_US


Šio įrašo failai

FailaiDydisFormatasPeržiūra

Su šiuo įrašu susijusių failų nėra.

Šis įrašas yra šioje (-se) kolekcijoje (-ose)

Rodyti trumpą aprašą