• Lietuvių
    • English
  • English 
    • Lietuvių
    • English
  • Login
View Item 
  •   DSpace Home
  • Universiteto produkcija / University's production
  • Universiteto leidyba / University's Publishing
  • Konferencijų medžiaga / Conference Materials
  • Tarptautinės konferencijos / International Conferences
  • International Conference "Electrical, Electronic and Information Sciences“ (eStream)
  • 2024 International Conference "Electrical, Electronic and Information Sciences“ (eStream)
  • View Item
  •   DSpace Home
  • Universiteto produkcija / University's production
  • Universiteto leidyba / University's Publishing
  • Konferencijų medžiaga / Conference Materials
  • Tarptautinės konferencijos / International Conferences
  • International Conference "Electrical, Electronic and Information Sciences“ (eStream)
  • 2024 International Conference "Electrical, Electronic and Information Sciences“ (eStream)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Exploration of Genetic Algorithm-Driven Hyperparameter Optimization for Convolutional Neural Networks

Thumbnail
Date
2024
Author
Narmontas, Audrius
Jankevičiūtė, Rūta
Bliujus, Tomas
Vaičekauskas, Evaldas
Abromavičius, Vytautas
Metadata
Show full item record
Abstract
Convolutional Neural Networks (CNNs) have been widely used in artificial intelligence (AI) research. However, the time-intensive nature of hyperparameter optimization remains a major challenge. In this study, we investigated three distinct CNN architectures, namely, ResNet, Multi-class, and ConvLSTM, by employing Genetic Algorithm (GA). The GA-driven optimization process efficiently adapts the parameters, resulting in significant improvements in validation accuracy and reduced training time. Moreover, our findings indicate that compared to exhaustive manual exploration, GA substantially reduces the time required for hyperparameter optimization, thereby offering a more efficient and effective approach for enhancing model outcomes in reasonable timeframes. This underscores the importance of employing advanced optimization techniques such as GA in AI research to achieve superior model outcomes.
Issue date (year)
2024
Author
Narmontas, Audrius
URI
https://etalpykla.vilniustech.lt/handle/123456789/159657
Collections
  • 2024 International Conference "Electrical, Electronic and Information Sciences“ (eStream) [41]

 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specializationThis CollectionBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specialization

My Account

LoginRegister