Show simple item record

dc.rights.licenseVisos teisės saugomos / All rights reserveden_US
dc.contributor.authorGodmalin, Rey Anthony
dc.date.accessioned2026-01-07T10:32:51Z
dc.date.available2026-01-07T10:32:51Z
dc.date.issued2025
dc.identifier.isbn9798331598747en_US
dc.identifier.issn2831-5634en_US
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/159681
dc.description.abstractMango leaf diseases significantly impact crop yield and quality, necessitating early and accurate detection for effective management. This study explores deep learning-based classification using MobileNetV3Small and EfficientNetB0 to automate mango leaf disease identification. A dataset comprising eight classes of healthy and diseased mango leaves was used to train and evaluate the models. The results show that EfficientNetB0 achieved an average accuracy of 99.33% with a loss of 0.0437, outperforming MobileNetV3Small, which attained an accuracy of 99.22% with a loss of 0.0583. The confusion matrix analysis reveals minimal misclassifications, with EfficientNetB0 demonstrating superior precision in distinguishing visually similar diseases. These findings highlight the effectiveness of deep learning models in plant disease classification, with EfficientNetB0 providing a more reliable solution. The study underscores the potential of AI-driven tools for real-time disease detection, which can significantly enhance precision agriculture and sustainable crop management.en_US
dc.format.extent6 p.en_US
dc.format.mediumTekstas / Texten_US
dc.language.isoenen_US
dc.relation.urihttps://etalpykla.vilniustech.lt/handle/123456789/159405en_US
dc.source.urihttps://ieeexplore.ieee.org/document/11016895en_US
dc.subjectConvolutional Neural Networken_US
dc.subjectArtificial Intelligenceen_US
dc.subjectMango farmingen_US
dc.titleEnhancing Mango Leaf Disease Diagnosis Using Convolutional Neural Networksen_US
dc.typeKonferencijos publikacija / Conference paperen_US
dcterms.accrualMethodRankinis pateikimas / Manual submissionen_US
dcterms.issued2025-06-02
dcterms.references17en_US
dc.description.versionTaip / Yesen_US
dc.contributor.institutionBohol Island State University - Clarin Campusen_US
dcterms.sourcetitle2025 IEEE Open Conference of Electrical, Electronic and Information Sciences (eStream), April 24, 2025, Vilnius, Lithuaniaen_US
dc.identifier.eisbn9798331598730en_US
dc.identifier.eissn2690-8506en_US
dc.publisher.nameIEEEen_US
dc.publisher.countryUnited States of Americaen_US
dc.publisher.cityNew Yorken_US
dc.identifier.doihttps://doi.org/10.1109/eStream66938.2025.11016895en_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record