• Lietuvių
    • English
  • English 
    • Lietuvių
    • English
  • Login
View Item 
  •   DSpace Home
  • Universiteto produkcija / University's production
  • Universiteto leidyba / University's Publishing
  • Konferencijų medžiaga / Conference Materials
  • Tarptautinės konferencijos / International Conferences
  • International Conference "Electrical, Electronic and Information Sciences“ (eStream)
  • 2025 International Conference "Electrical, Electronic and Information Sciences“ (eStream)
  • View Item
  •   DSpace Home
  • Universiteto produkcija / University's production
  • Universiteto leidyba / University's Publishing
  • Konferencijų medžiaga / Conference Materials
  • Tarptautinės konferencijos / International Conferences
  • International Conference "Electrical, Electronic and Information Sciences“ (eStream)
  • 2025 International Conference "Electrical, Electronic and Information Sciences“ (eStream)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Enhancing Mango Leaf Disease Diagnosis Using Convolutional Neural Networks

Thumbnail
Date
2025
Author
Godmalin, Rey Anthony
Metadata
Show full item record
Abstract
Mango leaf diseases significantly impact crop yield and quality, necessitating early and accurate detection for effective management. This study explores deep learning-based classification using MobileNetV3Small and EfficientNetB0 to automate mango leaf disease identification. A dataset comprising eight classes of healthy and diseased mango leaves was used to train and evaluate the models. The results show that EfficientNetB0 achieved an average accuracy of 99.33% with a loss of 0.0437, outperforming MobileNetV3Small, which attained an accuracy of 99.22% with a loss of 0.0583. The confusion matrix analysis reveals minimal misclassifications, with EfficientNetB0 demonstrating superior precision in distinguishing visually similar diseases. These findings highlight the effectiveness of deep learning models in plant disease classification, with EfficientNetB0 providing a more reliable solution. The study underscores the potential of AI-driven tools for real-time disease detection, which can significantly enhance precision agriculture and sustainable crop management.
Issue date (year)
2025
Author
Godmalin, Rey Anthony
URI
https://etalpykla.vilniustech.lt/handle/123456789/159681
Collections
  • 2025 International Conference "Electrical, Electronic and Information Sciences“ (eStream) [25]

 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specializationThis CollectionBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specialization

My Account

LoginRegister