| dc.rights.license | Visos teisės saugomos / All rights reserved | en_US |
| dc.contributor.author | Kyrychenko, Iryna | |
| dc.contributor.author | Tereshchenko, Glib | |
| dc.contributor.author | Kozak, Daria | |
| dc.contributor.author | Chupryna, Anastasiya | |
| dc.date.accessioned | 2026-01-07T14:04:50Z | |
| dc.date.available | 2026-01-07T14:04:50Z | |
| dc.date.issued | 2025 | |
| dc.identifier.isbn | 9798331598747 | en_US |
| dc.identifier.issn | 2831-5634 | en_US |
| dc.identifier.uri | https://etalpykla.vilniustech.lt/handle/123456789/159687 | |
| dc.description.abstract | Deep learning in medical image analysis has significantly improved diagnostic accuracy. However, using commercial solutions such as Google DeepMind Health, IBM Watson Health, and Aidoc is financially demanding, limiting their adoption in many healthcare institutions. In contrast, open-source systems like MONAI, nnU-Net, and DeepHealth Toolkit offer high efficiency in medical image analysis without substantial financial costs. This study evaluates their performance using metrics such as Dice Coefficient, Precision, Recall, and F1-score, comparing them with the results of commercial solutions. | en_US |
| dc.format.extent | 6 p. | en_US |
| dc.format.medium | Tekstas / Text | en_US |
| dc.language.iso | en | en_US |
| dc.relation.uri | https://etalpykla.vilniustech.lt/handle/123456789/159405 | en_US |
| dc.source.uri | https://ieeexplore.ieee.org/document/11016830 | en_US |
| dc.subject | deep learning | en_US |
| dc.subject | medical imaging | en_US |
| dc.subject | neural networks | en_US |
| dc.subject | artificial intelligence | en_US |
| dc.subject | nnU-Net | en_US |
| dc.subject | MONAI | en_US |
| dc.subject | DeepHealth Toolkit | en_US |
| dc.subject | performance evaluation | en_US |
| dc.title | Evaluation of Deep Learning Systems in Medical Diagnosis | en_US |
| dc.type | Konferencijos publikacija / Conference paper | en_US |
| dcterms.accrualMethod | Rankinis pateikimas / Manual submission | en_US |
| dcterms.issued | 2025-06-02 | |
| dcterms.references | 14 | en_US |
| dc.description.version | Taip / Yes | en_US |
| dc.contributor.institution | Kharkiv National University of Radio Electronics | en_US |
| dcterms.sourcetitle | 2025 IEEE Open Conference of Electrical, Electronic and Information Sciences (eStream), April 24, 2025, Vilnius, Lithuania | en_US |
| dc.identifier.eisbn | 9798331598730 | en_US |
| dc.identifier.eissn | 2690-8506 | en_US |
| dc.publisher.name | IEEE | en_US |
| dc.publisher.country | United States of America | en_US |
| dc.publisher.city | New York | en_US |
| dc.identifier.doi | https://doi.org/10.1109/eStream66938.2025.11016830 | en_US |