Show simple item record

dc.rights.licenseVisos teisės saugomos / All rights reserveden_US
dc.contributor.authorKyrychenko, Iryna
dc.contributor.authorTereshchenko, Glib
dc.contributor.authorKozak, Daria
dc.contributor.authorChupryna, Anastasiya
dc.date.accessioned2026-01-07T14:04:50Z
dc.date.available2026-01-07T14:04:50Z
dc.date.issued2025
dc.identifier.isbn9798331598747en_US
dc.identifier.issn2831-5634en_US
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/159687
dc.description.abstractDeep learning in medical image analysis has significantly improved diagnostic accuracy. However, using commercial solutions such as Google DeepMind Health, IBM Watson Health, and Aidoc is financially demanding, limiting their adoption in many healthcare institutions. In contrast, open-source systems like MONAI, nnU-Net, and DeepHealth Toolkit offer high efficiency in medical image analysis without substantial financial costs. This study evaluates their performance using metrics such as Dice Coefficient, Precision, Recall, and F1-score, comparing them with the results of commercial solutions.en_US
dc.format.extent6 p.en_US
dc.format.mediumTekstas / Texten_US
dc.language.isoenen_US
dc.relation.urihttps://etalpykla.vilniustech.lt/handle/123456789/159405en_US
dc.source.urihttps://ieeexplore.ieee.org/document/11016830en_US
dc.subjectdeep learningen_US
dc.subjectmedical imagingen_US
dc.subjectneural networksen_US
dc.subjectartificial intelligenceen_US
dc.subjectnnU-Neten_US
dc.subjectMONAIen_US
dc.subjectDeepHealth Toolkiten_US
dc.subjectperformance evaluationen_US
dc.titleEvaluation of Deep Learning Systems in Medical Diagnosisen_US
dc.typeKonferencijos publikacija / Conference paperen_US
dcterms.accrualMethodRankinis pateikimas / Manual submissionen_US
dcterms.issued2025-06-02
dcterms.references14en_US
dc.description.versionTaip / Yesen_US
dc.contributor.institutionKharkiv National University of Radio Electronicsen_US
dcterms.sourcetitle2025 IEEE Open Conference of Electrical, Electronic and Information Sciences (eStream), April 24, 2025, Vilnius, Lithuaniaen_US
dc.identifier.eisbn9798331598730en_US
dc.identifier.eissn2690-8506en_US
dc.publisher.nameIEEEen_US
dc.publisher.countryUnited States of Americaen_US
dc.publisher.cityNew Yorken_US
dc.identifier.doihttps://doi.org/10.1109/eStream66938.2025.11016830en_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record