• Lietuvių
    • English
  • English 
    • Lietuvių
    • English
  • Login
View Item 
  •   DSpace Home
  • Universiteto produkcija / University's production
  • Universiteto leidyba / University's Publishing
  • Konferencijų medžiaga / Conference Materials
  • Tarptautinės konferencijos / International Conferences
  • International Conference "Electrical, Electronic and Information Sciences“ (eStream)
  • 2025 International Conference "Electrical, Electronic and Information Sciences“ (eStream)
  • View Item
  •   DSpace Home
  • Universiteto produkcija / University's production
  • Universiteto leidyba / University's Publishing
  • Konferencijų medžiaga / Conference Materials
  • Tarptautinės konferencijos / International Conferences
  • International Conference "Electrical, Electronic and Information Sciences“ (eStream)
  • 2025 International Conference "Electrical, Electronic and Information Sciences“ (eStream)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Evaluation of Deep Learning Systems in Medical Diagnosis

Thumbnail
Date
2025
Author
Kyrychenko, Iryna
Tereshchenko, Glib
Kozak, Daria
Chupryna, Anastasiya
Metadata
Show full item record
Abstract
Deep learning in medical image analysis has significantly improved diagnostic accuracy. However, using commercial solutions such as Google DeepMind Health, IBM Watson Health, and Aidoc is financially demanding, limiting their adoption in many healthcare institutions. In contrast, open-source systems like MONAI, nnU-Net, and DeepHealth Toolkit offer high efficiency in medical image analysis without substantial financial costs. This study evaluates their performance using metrics such as Dice Coefficient, Precision, Recall, and F1-score, comparing them with the results of commercial solutions.
Issue date (year)
2025
Author
Kyrychenko, Iryna
URI
https://etalpykla.vilniustech.lt/handle/123456789/159687
Collections
  • 2025 International Conference "Electrical, Electronic and Information Sciences“ (eStream) [25]

 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specializationThis CollectionBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specialization

My Account

LoginRegister