• Lietuvių
    • English
  • Lietuvių 
    • Lietuvių
    • English
  • Prisijungti
Peržiūrėti įrašą 
  •   DSpace pagrindinis
  • Universiteto produkcija / University's production
  • Universiteto leidyba / University's Publishing
  • Konferencijų medžiaga / Conference Materials
  • Tarptautinės konferencijos / International Conferences
  • International Conference "Electrical, Electronic and Information Sciences“ (eStream)
  • 2025 International Conference "Electrical, Electronic and Information Sciences“ (eStream)
  • Peržiūrėti įrašą
  •   DSpace pagrindinis
  • Universiteto produkcija / University's production
  • Universiteto leidyba / University's Publishing
  • Konferencijų medžiaga / Conference Materials
  • Tarptautinės konferencijos / International Conferences
  • International Conference "Electrical, Electronic and Information Sciences“ (eStream)
  • 2025 International Conference "Electrical, Electronic and Information Sciences“ (eStream)
  • Peržiūrėti įrašą
JavaScript is disabled for your browser. Some features of this site may not work without it.

Optimized Fruit Detection in Complex Environments Using YOLOv11n for Smart Agricultural Applications

Thumbnail
Data
2025
Autorius
Valdez, Daryl B.
Metaduomenys
Rodyti detalų aprašą
Santrauka
This study explores the application of the YOLOv11 object detection algorithm for precise and efficient fruit detection in complex image environments. The research focuses on leveraging YOLOv11’s advanced single-stage detection architecture and Transfer Learning to enable real-time fruit identification while maintaining high detection accuracy, particularly for edge computing scenarios where computational efficiency is essential. To evaluate the effectiveness of the proposed system, the model was trained on a specialized fruit dataset consisting of images taken from real-world agricultural settings. The dataset comprises eleven distinct fruit classes captured under diverse conditions, including varying lighting, occlusions, and different angles. Experimental results revealed that the model achieved a mean average precision (mAP) of 90%, demonstrating its ability to localize and classify fruits with a high degree of reliability. The findings of this study have significant implications for the agricultural sector, particularly in automation-driven applications such as fruit harvesting, post-harvest processing, quality assessment, and inventory management. By integrating YOLOv11-based detection systems in the process, farms and agribusinesses can improve efficiency, reduce labor costs, and enhance productivity.
Paskelbimo data (metai)
2025
Autorius
Valdez, Daryl B.
URI
https://etalpykla.vilniustech.lt/handle/123456789/159693
Kolekcijos
  • 2025 International Conference "Electrical, Electronic and Information Sciences“ (eStream) [30]

 

 

Naršyti

Visame DSpaceRinkiniai ir kolekcijosPagal išleidimo datąAutoriaiAntraštėsTemos / Reikšminiai žodžiai InstitucijaFakultetasKatedra / institutasTipasŠaltinisLeidėjasTipas (PDB/ETD)Mokslo sritisStudijų kryptisVILNIUS TECH mokslinių tyrimų prioritetinės kryptys ir tematikosLietuvos sumanios specializacijosŠi kolekcijaPagal išleidimo datąAutoriaiAntraštėsTemos / Reikšminiai žodžiai InstitucijaFakultetasKatedra / institutasTipasŠaltinisLeidėjasTipas (PDB/ETD)Mokslo sritisStudijų kryptisVILNIUS TECH mokslinių tyrimų prioritetinės kryptys ir tematikosLietuvos sumanios specializacijos

Asmeninė paskyra

PrisijungtiRegistruotis