• Lietuvių
    • English
  • Lietuvių 
    • Lietuvių
    • English
  • Prisijungti
Peržiūrėti įrašą 
  •   DSpace pagrindinis
  • Universiteto produkcija / University's production
  • Universiteto leidyba / University's Publishing
  • Konferencijų medžiaga / Conference Materials
  • Tarptautinės konferencijos / International Conferences
  • International Conference "Electrical, Electronic and Information Sciences“ (eStream)
  • 2025 International Conference "Electrical, Electronic and Information Sciences“ (eStream)
  • Peržiūrėti įrašą
  •   DSpace pagrindinis
  • Universiteto produkcija / University's production
  • Universiteto leidyba / University's Publishing
  • Konferencijų medžiaga / Conference Materials
  • Tarptautinės konferencijos / International Conferences
  • International Conference "Electrical, Electronic and Information Sciences“ (eStream)
  • 2025 International Conference "Electrical, Electronic and Information Sciences“ (eStream)
  • Peržiūrėti įrašą
JavaScript is disabled for your browser. Some features of this site may not work without it.

iBon: A Web Application for Aerial Fauna Identification and Counting Using Machine Learning

Thumbnail
Data
2025
Autorius
Buslon Malarejes, John Stephen
Man-On Salvaleon, Vanesa Bea
Mission, Joseph Espina
Dapitilla Perin, Max Angelo
Metaduomenys
Rodyti detalų aprašą
Santrauka
Abstract: With the alarming decline in aerial fauna populations worldwide, the need for timely and accurate tools to monitor species trends and support conservation strategies has become critical. This paper aims to develop and evaluate iBon, a web-based application that provides automated bird identification and counting using advanced machine learning models. Traditional methods like manual observation are time-consuming, prone to observer bias, and inconsistent across datasets. iBon addresses these challenges by employing a Convolutional Neural Network (CNN) for bird identification, achieving 94% accuracy across 17 datasets, with performance boosted through a pre-trained MobileNet feature extractor. The system integrates YOLOv8, a fast and accurate object detection model for bird counting. Both models are assessed using accuracy, F1-score, and robustness to dataset variations. iBon delivers a reliable and user-friendly platform that empowers researchers, conservationists, and citizen scientists with efficient tools for biodiversity monitoring and data-driven decision-making.
Paskelbimo data (metai)
2025
Autorius
Buslon Malarejes, John Stephen
URI
https://etalpykla.vilniustech.lt/handle/123456789/159700
Kolekcijos
  • 2025 International Conference "Electrical, Electronic and Information Sciences“ (eStream) [30]

 

 

Naršyti

Visame DSpaceRinkiniai ir kolekcijosPagal išleidimo datąAutoriaiAntraštėsTemos / Reikšminiai žodžiai InstitucijaFakultetasKatedra / institutasTipasŠaltinisLeidėjasTipas (PDB/ETD)Mokslo sritisStudijų kryptisVILNIUS TECH mokslinių tyrimų prioritetinės kryptys ir tematikosLietuvos sumanios specializacijosŠi kolekcijaPagal išleidimo datąAutoriaiAntraštėsTemos / Reikšminiai žodžiai InstitucijaFakultetasKatedra / institutasTipasŠaltinisLeidėjasTipas (PDB/ETD)Mokslo sritisStudijų kryptisVILNIUS TECH mokslinių tyrimų prioritetinės kryptys ir tematikosLietuvos sumanios specializacijos

Asmeninė paskyra

PrisijungtiRegistruotis