Show simple item record

dc.rights.licenseVisos teisės saugomos / All rights reserveden_US
dc.contributor.authorAbuda, Carlo Jude P.
dc.date.accessioned2026-01-09T06:57:52Z
dc.date.available2026-01-09T06:57:52Z
dc.date.issued2025
dc.identifier.isbn9798331598747en_US
dc.identifier.issn2831-5634en_US
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/159702
dc.description.abstractThis research presents the development and implementation of MIS-GeoMAPA, a comprehensive Management Information System utilizing geospatial modeling and predictive algorithms for forest fire readiness and early warning in Leyte's Sab-a Basin Peatland (LSBP). Employing an iterative-waterfall development approach, we integrated real-time environmental sensor data, including temperature, humidity, wind speed, and soil moisture, with advanced geospatial analysis. Predictive models, particularly linear and logistic regression, were developed to forecast fire risks, achieving high accuracy validated through statistical tests like the Wilcoxon signed-rank test. The system’s performance, reflected in a Mean Squared Error (MSE) of 0.25 and an 88% accuracy rate, underscores its potential in enhancing fire preparedness and response. This study highlights the critical role of environmental monitoring and predictive analytics in mitigating forest fire impacts, offering a scalable solution for environmental management and disaster readiness.en_US
dc.format.extent8 p.en_US
dc.format.mediumTekstas / Texten_US
dc.language.isoenen_US
dc.relation.urihttps://etalpykla.vilniustech.lt/handle/123456789/159405en_US
dc.source.urihttps://ieeexplore.ieee.org/document/11016892en_US
dc.subjectGISen_US
dc.subjectgeospatial analysisen_US
dc.subjectpredictive modelsen_US
dc.subjectpeatlandsen_US
dc.titleDevelopment of Management Information System using Geospatial Modeling Analysis and Predictive Algorithms (Geo-MAPA): A Smart-Monitored Alert and Response Technology for Forest Fire Readiness and Early-warning System (SMARTFIRES) For Leyte Sab-a Basin Peatlanden_US
dc.typeKonferencijos publikacija / Conference paperen_US
dcterms.accrualMethodRankinis pateikimas / Manual submissionen_US
dcterms.issued2025-06-02
dcterms.references47en_US
dc.description.versionTaip / Yesen_US
dc.contributor.institutionVisayas State University Alangalangen_US
dcterms.sourcetitle2025 IEEE Open Conference of Electrical, Electronic and Information Sciences (eStream), April 24, 2025, Vilnius, Lithuaniaen_US
dc.identifier.eisbn9798331598730en_US
dc.identifier.eissn2690-8506en_US
dc.publisher.nameIEEEen_US
dc.publisher.countryUnited States of Americaen_US
dc.publisher.cityNew Yorken_US
dc.identifier.doihttps://doi.org/10.1109/eStream66938.2025.11016892en_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record