• Lietuvių
    • English
  • English 
    • Lietuvių
    • English
  • Login
View Item 
  •   DSpace Home
  • Universiteto produkcija / University's production
  • Universiteto leidyba / University's Publishing
  • Konferencijų medžiaga / Conference Materials
  • Tarptautinės konferencijos / International Conferences
  • International Conference "Electrical, Electronic and Information Sciences“ (eStream)
  • 2025 International Conference "Electrical, Electronic and Information Sciences“ (eStream)
  • View Item
  •   DSpace Home
  • Universiteto produkcija / University's production
  • Universiteto leidyba / University's Publishing
  • Konferencijų medžiaga / Conference Materials
  • Tarptautinės konferencijos / International Conferences
  • International Conference "Electrical, Electronic and Information Sciences“ (eStream)
  • 2025 International Conference "Electrical, Electronic and Information Sciences“ (eStream)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Development of Management Information System using Geospatial Modeling Analysis and Predictive Algorithms (Geo-MAPA): A Smart-Monitored Alert and Response Technology for Forest Fire Readiness and Early-warning System (SMARTFIRES) For Leyte Sab-a Basin Peatland

Thumbnail
Date
2025
Author
Abuda, Carlo Jude P.
Metadata
Show full item record
Abstract
This research presents the development and implementation of MIS-GeoMAPA, a comprehensive Management Information System utilizing geospatial modeling and predictive algorithms for forest fire readiness and early warning in Leyte's Sab-a Basin Peatland (LSBP). Employing an iterative-waterfall development approach, we integrated real-time environmental sensor data, including temperature, humidity, wind speed, and soil moisture, with advanced geospatial analysis. Predictive models, particularly linear and logistic regression, were developed to forecast fire risks, achieving high accuracy validated through statistical tests like the Wilcoxon signed-rank test. The system’s performance, reflected in a Mean Squared Error (MSE) of 0.25 and an 88% accuracy rate, underscores its potential in enhancing fire preparedness and response. This study highlights the critical role of environmental monitoring and predictive analytics in mitigating forest fire impacts, offering a scalable solution for environmental management and disaster readiness.
Issue date (year)
2025
Author
Abuda, Carlo Jude P.
URI
https://etalpykla.vilniustech.lt/handle/123456789/159702
Collections
  • 2025 International Conference "Electrical, Electronic and Information Sciences“ (eStream) [38]

 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specializationThis CollectionBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specialization

My Account

LoginRegister