• Lietuvių
    • English
  • Lietuvių 
    • Lietuvių
    • English
  • Prisijungti
Peržiūrėti įrašą 
  •   DSpace pagrindinis
  • Universiteto produkcija / University's production
  • Universiteto leidyba / University's Publishing
  • Konferencijų medžiaga / Conference Materials
  • Tarptautinės konferencijos / International Conferences
  • International Conference "Electrical, Electronic and Information Sciences“ (eStream)
  • 2025 International Conference "Electrical, Electronic and Information Sciences“ (eStream)
  • Peržiūrėti įrašą
  •   DSpace pagrindinis
  • Universiteto produkcija / University's production
  • Universiteto leidyba / University's Publishing
  • Konferencijų medžiaga / Conference Materials
  • Tarptautinės konferencijos / International Conferences
  • International Conference "Electrical, Electronic and Information Sciences“ (eStream)
  • 2025 International Conference "Electrical, Electronic and Information Sciences“ (eStream)
  • Peržiūrėti įrašą
JavaScript is disabled for your browser. Some features of this site may not work without it.

Evaluating CNN, RNN, and Vision Transformer for Emotion Recognition: Strengths and Weaknesses

Thumbnail
Data
2025
Autorius
Yushchenko, Artur
Smelyakov, Kirill
Chupryna, Anastasiya
Metaduomenys
Rodyti detalų aprašą
Santrauka
This paper explores three prominent deep learning architectures — Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), and Vision Transformers (ViT) — for emotion recognition, examining their potential strengths and weaknesses under various conditions. It discusses how each approach may capture critical spatial, temporal, or global features in emotional data, highlighting differences in feature extraction, representational capacity, and scalability. Additionally, new solutions are proposed to enhance accuracy and adaptability, integrating design principles that address recognized challenges in real-world implementations. Novel insights are offered on aligning model selection with specific application demands, such as the nature of input signals, available computational resources, and desired real-time performance. While the comparative analysis remains broad to accommodate diverse use cases, it underscores the importance of carefully balancing accuracy and efficiency. Conclusions drawn from the investigation include recommendations on when each architecture may be most advantageous, providing a flexible framework for researchers and practitioners to navigate the trade-offs. These findings have implications for developing adaptive emotion recognition systems that leverage state-of-the-art deep learning techniques across multiple contexts.
Paskelbimo data (metai)
2025
Autorius
Yushchenko, Artur
URI
https://etalpykla.vilniustech.lt/handle/123456789/159709
Kolekcijos
  • 2025 International Conference "Electrical, Electronic and Information Sciences“ (eStream) [38]

 

 

Naršyti

Visame DSpaceRinkiniai ir kolekcijosPagal išleidimo datąAutoriaiAntraštėsTemos / Reikšminiai žodžiai InstitucijaFakultetasKatedra / institutasTipasŠaltinisLeidėjasTipas (PDB/ETD)Mokslo sritisStudijų kryptisVILNIUS TECH mokslinių tyrimų prioritetinės kryptys ir tematikosLietuvos sumanios specializacijosŠi kolekcijaPagal išleidimo datąAutoriaiAntraštėsTemos / Reikšminiai žodžiai InstitucijaFakultetasKatedra / institutasTipasŠaltinisLeidėjasTipas (PDB/ETD)Mokslo sritisStudijų kryptisVILNIUS TECH mokslinių tyrimų prioritetinės kryptys ir tematikosLietuvos sumanios specializacijos

Asmeninė paskyra

PrisijungtiRegistruotis