• Lietuvių
    • English
  • Lietuvių 
    • Lietuvių
    • English
  • Prisijungti
Peržiūrėti įrašą 
  •   DSpace pagrindinis
  • Universiteto produkcija / University's production
  • Universiteto leidyba / University's Publishing
  • Konferencijų medžiaga / Conference Materials
  • Tarptautinės konferencijos / International Conferences
  • International Conference "Electrical, Electronic and Information Sciences“ (eStream)
  • 2025 International Conference "Electrical, Electronic and Information Sciences“ (eStream)
  • Peržiūrėti įrašą
  •   DSpace pagrindinis
  • Universiteto produkcija / University's production
  • Universiteto leidyba / University's Publishing
  • Konferencijų medžiaga / Conference Materials
  • Tarptautinės konferencijos / International Conferences
  • International Conference "Electrical, Electronic and Information Sciences“ (eStream)
  • 2025 International Conference "Electrical, Electronic and Information Sciences“ (eStream)
  • Peržiūrėti įrašą
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Hybrid Approach in Developing a Recommendation System for Personalized Selection of Locations for a Visit

Thumbnail
Data
2025
Autorius
Lapin, Vladyslav
Smelyakov, Kirill
Chupryna, Anastasiya
Dudar, Zoia
Metaduomenys
Rodyti detalų aprašą
Santrauka
Personalized recommendation systems play a crucial role in enhancing user experiences by providing tailored suggestions based on individual preferences and contextual factors. This paper presents a hybrid approach in developing a recommendation system for selecting locations to visit, integrating user-defined filters, contextual data, and collective user feedback. The proposed system leverages a deep neural network to analyze various inputs, including explicit user preferences (e.g., desired atmosphere, type of location, etc.), dynamic contextual factors (e.g., weather conditions, temperature, etc.), and historical user data (e.g., ratings, recommendation trends for similar preferences, etc.). By combining content-based filtering with collaborative filtering techniques, the model aims to improve the accuracy and relevance of recommendations. The system classifies locations as suitable or unsuitable based on the given criteria, providing users with adaptive and context-aware suggestions. The hybrid nature of the approach allows for a more comprehensive understanding of user needs while incorporating real-time environmental conditions. Experimental validation is conducted to assess the effectiveness of the model in generating accurate recommendations. The results highlight the advantages of integrating multiple data sources and deep learning techniques to enhance accuracy and achieve high-quality recommendations. This research contributes to the development of intelligent recommendation systems by proposing a scalable and adaptable framework for personalized location selection.
Paskelbimo data (metai)
2025
Autorius
Lapin, Vladyslav
URI
https://etalpykla.vilniustech.lt/handle/123456789/159710
Kolekcijos
  • 2025 International Conference "Electrical, Electronic and Information Sciences“ (eStream) [38]

 

 

Naršyti

Visame DSpaceRinkiniai ir kolekcijosPagal išleidimo datąAutoriaiAntraštėsTemos / Reikšminiai žodžiai InstitucijaFakultetasKatedra / institutasTipasŠaltinisLeidėjasTipas (PDB/ETD)Mokslo sritisStudijų kryptisVILNIUS TECH mokslinių tyrimų prioritetinės kryptys ir tematikosLietuvos sumanios specializacijosŠi kolekcijaPagal išleidimo datąAutoriaiAntraštėsTemos / Reikšminiai žodžiai InstitucijaFakultetasKatedra / institutasTipasŠaltinisLeidėjasTipas (PDB/ETD)Mokslo sritisStudijų kryptisVILNIUS TECH mokslinių tyrimų prioritetinės kryptys ir tematikosLietuvos sumanios specializacijos

Asmeninė paskyra

PrisijungtiRegistruotis