Rodyti trumpą aprašą

dc.rights.licenseVisos teisės saugomos / All rights reserveden_US
dc.contributor.authorLapin, Vladyslav
dc.contributor.authorSmelyakov, Kirill
dc.contributor.authorChupryna, Anastasiya
dc.contributor.authorDudar, Zoia
dc.date.accessioned2026-01-09T11:49:44Z
dc.date.available2026-01-09T11:49:44Z
dc.date.issued2025
dc.identifier.isbn9798331598747en_US
dc.identifier.issn2831-5634en_US
dc.identifier.urihttps://etalpykla.vilniustech.lt/handle/123456789/159710
dc.description.abstractPersonalized recommendation systems play a crucial role in enhancing user experiences by providing tailored suggestions based on individual preferences and contextual factors. This paper presents a hybrid approach in developing a recommendation system for selecting locations to visit, integrating user-defined filters, contextual data, and collective user feedback. The proposed system leverages a deep neural network to analyze various inputs, including explicit user preferences (e.g., desired atmosphere, type of location, etc.), dynamic contextual factors (e.g., weather conditions, temperature, etc.), and historical user data (e.g., ratings, recommendation trends for similar preferences, etc.). By combining content-based filtering with collaborative filtering techniques, the model aims to improve the accuracy and relevance of recommendations. The system classifies locations as suitable or unsuitable based on the given criteria, providing users with adaptive and context-aware suggestions. The hybrid nature of the approach allows for a more comprehensive understanding of user needs while incorporating real-time environmental conditions. Experimental validation is conducted to assess the effectiveness of the model in generating accurate recommendations. The results highlight the advantages of integrating multiple data sources and deep learning techniques to enhance accuracy and achieve high-quality recommendations. This research contributes to the development of intelligent recommendation systems by proposing a scalable and adaptable framework for personalized location selection.en_US
dc.format.extent6 p.en_US
dc.format.mediumTekstas / Texten_US
dc.language.isoenen_US
dc.relation.urihttps://etalpykla.vilniustech.lt/handle/123456789/159405en_US
dc.source.urihttps://ieeexplore.ieee.org/document/11016856en_US
dc.subjectrecommendation systemsen_US
dc.subjectdeep learningen_US
dc.subjecthybrid approachen_US
dc.subjectpersonalizationen_US
dc.subjectlocation-based servicesen_US
dc.subjectcontextual filteringen_US
dc.titleA Hybrid Approach in Developing a Recommendation System for Personalized Selection of Locations for a Visiten_US
dc.typeKonferencijos publikacija / Conference paperen_US
dcterms.accrualMethodRankinis pateikimas / Manual submissionen_US
dcterms.issued2025-06-02
dcterms.references15en_US
dc.description.versionTaip / Yesen_US
dc.contributor.institutionKharkiv National University of Radio Electronicsen_US
dcterms.sourcetitle2025 IEEE Open Conference of Electrical, Electronic and Information Sciences (eStream), April 24, 2025, Vilnius, Lithuaniaen_US
dc.identifier.eisbn9798331598730en_US
dc.identifier.eissn2690-8506en_US
dc.publisher.nameIEEEen_US
dc.publisher.countryUnited States of Americaen_US
dc.publisher.cityNew Yorken_US
dc.identifier.doihttps://doi.org/10.1109/eStream66938.2025.11016856en_US


Šio įrašo failai

FailaiDydisFormatasPeržiūra

Su šiuo įrašu susijusių failų nėra.

Šis įrašas yra šioje (-se) kolekcijoje (-ose)

Rodyti trumpą aprašą