| dc.rights.license | Visos teisės saugomos / All rights reserved | en_US |
| dc.contributor.author | Giedra, Henrikas | |
| dc.contributor.author | Katkevičius, Andrius | |
| dc.contributor.author | Plonis, Darius | |
| dc.contributor.author | Matuzevičius, Dalius | |
| dc.date.accessioned | 2026-01-12T12:37:37Z | |
| dc.date.available | 2026-01-12T12:37:37Z | |
| dc.date.issued | 2025 | |
| dc.identifier.isbn | 9798331598747 | en_US |
| dc.identifier.issn | 2831-5634 | en_US |
| dc.identifier.uri | https://etalpykla.vilniustech.lt/handle/123456789/159721 | |
| dc.description.abstract | Eyeglasses style classification is an important task in computer vision with applications in virtual try-on systems, retail, and personalized recommendations. Such systems must operate efficiently in real-time, even under constraints such as limited training data, class imbalance, and variable product imagery. This study explores the effectiveness of contour-based features, specifically Elliptic Fourier Descriptors (EFD), for classifying eyeglass frame styles. EFD coefficients were extracted from three contour perspectives (full frame, half-frame skeletonized, lens boundaries) and combined into a comprehensive feature representation. Classification performance was assessed using various machine learning algorithms evaluated through 5-fold cross-validation on a diverse dataset of frame designs. Nonlinear classifiers, particularly cubic SVM, fine k-NN, and neural networks, achieved superior performance, with validation accuracies exceeding 94%. The findings demonstrate the discriminative capability, robustness, and efficiency of contour-based features, underscoring their potential advantages and practical limitations relative to alternative feature extraction methods. | en_US |
| dc.format.extent | 5 p. | en_US |
| dc.format.medium | Tekstas / Text | en_US |
| dc.language.iso | en | en_US |
| dc.relation.uri | https://etalpykla.vilniustech.lt/handle/123456789/159405 | en_US |
| dc.source.uri | https://ieeexplore.ieee.org/document/11016853 | en_US |
| dc.subject | virtual try-on | en_US |
| dc.subject | eyeglasses frame | en_US |
| dc.subject | contour-based shape descriptors | en_US |
| dc.subject | elliptic fourier descriptors | en_US |
| dc.subject | feature extraction | en_US |
| dc.subject | shape analysis | en_US |
| dc.subject | classification | en_US |
| dc.subject | machine learning | en_US |
| dc.subject | computer vision | en_US |
| dc.title | Evaluation of Contour-based Features for Eyeglasses Style Classification | en_US |
| dc.type | Konferencijos publikacija / Conference paper | en_US |
| dcterms.accrualMethod | Rankinis pateikimas / Manual submission | en_US |
| dcterms.issued | 2025-06-02 | |
| dcterms.references | 14 | en_US |
| dc.description.version | Taip / Yes | en_US |
| dc.contributor.institution | Vilniaus Gedimino technikos universitetas | en_US |
| dc.contributor.institution | Vilnius Gediminas Technical University | en_US |
| dc.contributor.faculty | Elektronikos fakultetas / Faculty of Electronics | en_US |
| dc.contributor.department | Elektroninių sistemų katedra / Department of Electronic Systems | en_US |
| dcterms.sourcetitle | 2025 IEEE Open Conference of Electrical, Electronic and Information Sciences (eStream), April 24, 2025, Vilnius, Lithuania | en_US |
| dc.identifier.eisbn | 9798331598730 | en_US |
| dc.identifier.eissn | 2690-8506 | en_US |
| dc.publisher.name | IEEE | en_US |
| dc.publisher.country | United States of America | en_US |
| dc.publisher.city | New York | en_US |
| dc.identifier.doi | https://doi.org/10.1109/eStream66938.2025.11016853 | en_US |