• Lietuvių
    • English
  • English 
    • Lietuvių
    • English
  • Login
View Item 
  •   DSpace Home
  • Universiteto produkcija / University's production
  • Universiteto leidyba / University's Publishing
  • Konferencijų medžiaga / Conference Materials
  • Tarptautinės konferencijos / International Conferences
  • International Conference "Electrical, Electronic and Information Sciences“ (eStream)
  • 2025 International Conference "Electrical, Electronic and Information Sciences“ (eStream)
  • View Item
  •   DSpace Home
  • Universiteto produkcija / University's production
  • Universiteto leidyba / University's Publishing
  • Konferencijų medžiaga / Conference Materials
  • Tarptautinės konferencijos / International Conferences
  • International Conference "Electrical, Electronic and Information Sciences“ (eStream)
  • 2025 International Conference "Electrical, Electronic and Information Sciences“ (eStream)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An Approach for Building IT Support Dataset for Machine Learning Models

Thumbnail
Date
2025
Author
Jevsejev, Roman
Mažeika, Dalius
Bereiša, Mindaugas
Metadata
Show full item record
Abstract
This study investigates the challenges of preparing datasets for machine learning models based on the data of a centralized system for managing IT incidents within an organization. Key challenges include data quality issues, class imbalance, the need for anonymization, and redundancy in the information. Various data preparation techniques are analyzed, such as handling missing values, encoding categorical and textual data, balancing datasets, anonymizing sensitive information, and performing feature selection. The paper highlights its structural complexities and processing difficulties by examining the state enterprise's Service Desk incident data. Furthermore, the impact of data engineering and cleaning techniques on the accuracy and reliability of machine learning models is assessed. Finally, specific techniques to improve data preparation and to optimize model performance are analyzed.
Issue date (year)
2025
Author
Jevsejev, Roman
URI
https://etalpykla.vilniustech.lt/handle/123456789/159726
Collections
  • 2025 International Conference "Electrical, Electronic and Information Sciences“ (eStream) [51]

 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specializationThis CollectionBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specialization

My Account

LoginRegister