• Lietuvių
    • English
  • English 
    • Lietuvių
    • English
  • Login
View Item 
  •   DSpace Home
  • Universiteto produkcija / University's production
  • Universiteto leidyba / University's Publishing
  • Konferencijų medžiaga / Conference Materials
  • Tarptautinės konferencijos / International Conferences
  • International Scientific Conference “Transbaltica"
  • 12th International Scientific Conference “Transbaltica 2021"
  • View Item
  •   DSpace Home
  • Universiteto produkcija / University's production
  • Universiteto leidyba / University's Publishing
  • Konferencijų medžiaga / Conference Materials
  • Tarptautinės konferencijos / International Conferences
  • International Scientific Conference “Transbaltica"
  • 12th International Scientific Conference “Transbaltica 2021"
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Overview of Problematic Aspects of Passenger Car Hybrid Technologies

Thumbnail
Date
2022
Author
Vipartas, Tadas
Rimkus, Alfredas
Zöldy, Máté
Metadata
Show full item record
Abstract
Hybrid electric vehicles (HEV) with Atkinson cycle engines typically use variable valve timing (VVT) technology that reduces fuel consumption up to 30% due to the delay in closing intake valve. Engine thermal efficiency can be raised even up to 40%, however it is necessary to reduce heat loss through the cooling system and to avoid knocking combustion. Electric Vehicle (EV) mode operates at very low loads and the traction force is generated only by the electric motor, while internal combustion engine (ICE) is off to avoid an inefficient zone. Parallel Hybrid (PH) mode operates at higher loads, ICE is on and depending on accelerator pedal and on the State of Charge (SOC) of high voltage batteries, the powertrain can operate in Smart Charge (SC) and Electric Boost (E-Boost). HEVs emission profile is not always improved due to cold start events. NOx, HC, CO and particle number (PN) increase significantly after cold start. Moreover, the amount of emissions depends on SOC of batteries. At high SOC fuel consumption, CO and NOx emissions are reduced, while at low SOC emissions are increased significantly enough. Analysis show that cold start CO2 emissions along the New European Driving Cycle (NEDC) and Worldwide Light duty vehicle Test Procedure (WLTP) procedures have differences even up to 30%.
Issue date (year)
2022
Author
Vipartas, Tadas
URI
https://etalpykla.vilniustech.lt/handle/123456789/159889
Collections
  • 12th International Scientific Conference “Transbaltica 2021" [47]

 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specializationThis CollectionBy Issue DateAuthorsTitlesSubjects / KeywordsInstitutionFacultyDepartment / InstituteTypeSourcePublisherType (PDB/ETD)Research fieldStudy directionVILNIUS TECH research priorities and topicsLithuanian intelligent specialization

My Account

LoginRegister