• Lietuvių
    • English
  • Lietuvių 
    • Lietuvių
    • English
  • Prisijungti
Peržiūrėti įrašą 
  •   DSpace pagrindinis
  • Universiteto produkcija / University's production
  • Universiteto leidyba / University's Publishing
  • Konferencijų medžiaga / Conference Materials
  • Tarptautinės konferencijos / International Conferences
  • International Conference "Electrical, Electronic and Information Sciences“ (eStream)
  • 2019 International Conference "Electrical, Electronic and Information Sciences“ (eStream)
  • Peržiūrėti įrašą
  •   DSpace pagrindinis
  • Universiteto produkcija / University's production
  • Universiteto leidyba / University's Publishing
  • Konferencijų medžiaga / Conference Materials
  • Tarptautinės konferencijos / International Conferences
  • International Conference "Electrical, Electronic and Information Sciences“ (eStream)
  • 2019 International Conference "Electrical, Electronic and Information Sciences“ (eStream)
  • Peržiūrėti įrašą
JavaScript is disabled for your browser. Some features of this site may not work without it.

Comparison of Multi-Layer Perceptron and Cascade Feed-Forward Neural Network for Head-Related Transfer Function Interpolation

Thumbnail
Data
2019
Autorius
Tamulionis, Mantas
Serackis, Artūras
Metaduomenys
Rodyti detalų aprašą
Santrauka
Acoustic Virtual Reality (AVR) is a popular field of today's research, and the technologies it explores allow users to experience the virtual reality even more interactively, creating a sense of being truly involved into a virtual acoustic field. Auralization is one of the most interesting and useful AVR techniques. This procedure makes it possible to simulate how sound waves will behave in a particular environment, including how the listener will perceive it. This is achieved by taking into account Head-related transfer function (HRTF), which is essential for creating the main auralization product - Binaural Room Impulse Response (BRIR). It is common to use pre-recorded HRTF databases, but the required HRTF value can also be modeled using Artificial Neural networks (ANN). This article presents an investigation on ANN application for HRTF interpolation from discrete measured functions. Two types of neural networks are investigated: a Multi-Layer Perceptron and a Cascade Feed-Forward Network. Experimental investigation has shown that additional feed of inputs to the hidden layer in cascade network does not improve the interpolation performance. The best results were received using Multi-Layer Perceptron having two hidden layers with 32 and 16 neurons respectively.
Paskelbimo data (metai)
2019
Autorius
Tamulionis, Mantas
URI
https://etalpykla.vilniustech.lt/handle/123456789/159528
Kolekcijos
  • 2019 International Conference "Electrical, Electronic and Information Sciences“ (eStream) [27]

 

 

Naršyti

Visame DSpaceRinkiniai ir kolekcijosPagal išleidimo datąAutoriaiAntraštėsTemos / Reikšminiai žodžiai InstitucijaFakultetasKatedra / institutasTipasŠaltinisLeidėjasTipas (PDB/ETD)Mokslo sritisStudijų kryptisVILNIUS TECH mokslinių tyrimų prioritetinės kryptys ir tematikosLietuvos sumanios specializacijosŠi kolekcijaPagal išleidimo datąAutoriaiAntraštėsTemos / Reikšminiai žodžiai InstitucijaFakultetasKatedra / institutasTipasŠaltinisLeidėjasTipas (PDB/ETD)Mokslo sritisStudijų kryptisVILNIUS TECH mokslinių tyrimų prioritetinės kryptys ir tematikosLietuvos sumanios specializacijos

Asmeninė paskyra

PrisijungtiRegistruotis