• Lietuvių
    • English
  • Lietuvių 
    • Lietuvių
    • English
  • Prisijungti
Peržiūrėti įrašą 
  •   DSpace pagrindinis
  • Universiteto produkcija / University's production
  • Universiteto leidyba / University's Publishing
  • Konferencijų medžiaga / Conference Materials
  • Tarptautinės konferencijos / International Conferences
  • International Conference "Electrical, Electronic and Information Sciences“ (eStream)
  • 2025 International Conference "Electrical, Electronic and Information Sciences“ (eStream)
  • Peržiūrėti įrašą
  •   DSpace pagrindinis
  • Universiteto produkcija / University's production
  • Universiteto leidyba / University's Publishing
  • Konferencijų medžiaga / Conference Materials
  • Tarptautinės konferencijos / International Conferences
  • International Conference "Electrical, Electronic and Information Sciences“ (eStream)
  • 2025 International Conference "Electrical, Electronic and Information Sciences“ (eStream)
  • Peržiūrėti įrašą
JavaScript is disabled for your browser. Some features of this site may not work without it.

Senti Guide: A Machine Learning-Based Sentiment Analysis System for Student Feedback Evaluation

Thumbnail
Data
2025
Autorius
Ariño, Angeline W.
Managaytay, John Jayford P.
Bacalso, John Vic C.
Remolado, Alvin T.
Metaduomenys
Rodyti detalų aprašą
Santrauka
In academic settings, student feedback plays a crucial role in evaluating events and improving future planning. However, traditional manual feedback processing is time-consuming, error-prone, and inconsistent, often leading to delays in decision-making. To address this, the Senti Guide web application was developed, incorporating sentiment analysis to automatically classify student feedback into positive, neutral, or negative sentiments. The system utilizes Support Vector Machines (SVM) with a Radial Basis Function (RBF) kernel for sentiment classification, ensuring efficient handling of nonlinear relationships in the data. This method allows the system to effectively differentiate between complex patterns in student feedback. Preprocessing steps such as normalization, tokenization, and stop-word removal are applied to clean and structure the feedback data, preparing it for optimal analysis. Furthermore, hyperparameter tuning is employed to optimize the model’s performance, improving its accuracy, precision, recall, and F1 score. The model demonstrates significant performance improvements, achieving high classification accuracy of 90.05%, precision of 90.56%, recall of 90.05%, and F1-score of 90.04%. By automating sentiment analysis, Senti Guide provides the SSG with a scalable solution to modernize evaluation methods and enhance the future quality of school events. This research underscored the significance of employing machine learning to improve feedback processing, offering valuable insights for the Supreme Student Government to enhance event planning and student engagement.
Paskelbimo data (metai)
2025
Autorius
Ariño, Angeline W.
URI
https://etalpykla.vilniustech.lt/handle/123456789/159688
Kolekcijos
  • 2025 International Conference "Electrical, Electronic and Information Sciences“ (eStream) [38]

 

 

Naršyti

Visame DSpaceRinkiniai ir kolekcijosPagal išleidimo datąAutoriaiAntraštėsTemos / Reikšminiai žodžiai InstitucijaFakultetasKatedra / institutasTipasŠaltinisLeidėjasTipas (PDB/ETD)Mokslo sritisStudijų kryptisVILNIUS TECH mokslinių tyrimų prioritetinės kryptys ir tematikosLietuvos sumanios specializacijosŠi kolekcijaPagal išleidimo datąAutoriaiAntraštėsTemos / Reikšminiai žodžiai InstitucijaFakultetasKatedra / institutasTipasŠaltinisLeidėjasTipas (PDB/ETD)Mokslo sritisStudijų kryptisVILNIUS TECH mokslinių tyrimų prioritetinės kryptys ir tematikosLietuvos sumanios specializacijos

Asmeninė paskyra

PrisijungtiRegistruotis